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A Noncommutative Theory of Penrose Tilings
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Considering quantales as generalised noncommutative spaces, we address as an example
a quantale Pen based on the Penrose tilings of the plane. We study in general the
representations of involutive quantales on those of binary relations, and show that
in the case of Pen the algebraically irreducible representations provide a complete
classification of the set of Penrose tilings from which its representation as a quotient of
Cantor space is recovered.
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1. INTRODUCTION

The concept of quantale, introduced in (Mulvey, 1986) to investigate the
spectrum of noncommutative C*-algebras, generalises that of locale, or “point
free space” (Johnstone, 1982), in a way that brings together the noncommutative
topology of (Giles and Kummer, 1971) with ideas stemming from the construc-
tive formulation of classical results in the theory of commutative C*-algebras
(Banaschewski and Mulvey, 2000a,b, To appear). In particular, there is a functor
from unital C*-algebras to the category of unital involutive quantales which is a
complete invariant: to each C*-algebra A it assigns the quantale Max A of all the
closed linear subspaces of A (its operator spaces, Pisier, 2003). This functor was
proposed in (Mulvey, 1989) as a noncommutative generalisation of the classical
maximal spectrum, and has been subsequently studied in various papers (Kruml,
2002; Kruml et al., 2003; Kruml and Resende, 2004; Mulvey, 2002; Mulvey and
Pelletier, 2001; Mulvey and Pelletier, 2002; Paseka and Rosický, 2000; Resende,
2004).
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Another motivation for the notion of quantale in (Mulvey, 1986) was that
presentations of quantales by generators and relations can be regarded equiva-
lently as theories in a noncommutative logic whose conjunction & is related to
the arrow of time: a&b is to be read as “a and then b,” emphasising the fact
that a&b is in general different from b&a, and a&a is different from a. This
logical view is analogous to the Lindenbaum construction that allows theories
in propositional geometric logic to be considered as presentations of locales by
generators and relations, which in particular was exploited when proving in an
arbitrary Grothendieck topos that the category of commutative unital C*-algebras
is equivalent to the category of compact completely regular locales (Banaschewski
and Mulvey, 2000a,b, To appear), thus generalising the classical Gelfand duality,
which (in the presence of the Axiom of Choice) establishes an equivalence between
(the dual of) the category of commutative unital C*-algebras and the category of
compact Hausdorff spaces.

This logical view also suggests the possibility of describing quantum sys-
tems using quantales determined by noncommutative theories (Mulvey, 1986),
although this idea has not so far been pursued in the context of quantum physics:
quantales have been mentioned in physics, but not in this way (see, for instance,
Amira et al., 1998; Coecke and Stubbe, 1999). However, the logical view was
one of the influences behind the introduction of the quantale Max A, in the sense
that a presentation by generators and relations may be obtained as a generalisation
of that of the locale Max A considered in the case of a commutative C*-algebra
A (Banaschewski and Mulvey, 2000a,b, To appear). It has also been used ex-
tensively in computer science when studying concurrent systems (Abramsky
and Vickers, 1993; Resende, 1999, 2000, 2001, 2002; Resende and Vickers,
2003).

Since quantales may also be considered as semigroups in the closed category
of sup-lattices (Joyal and Tierney, 1984), a natural way of studying them is to
look at their actions by endomorphisms on sup-lattices, that is, their right or left
modules, or, equivalently, their representations. In particular, the notion of alge-
braically irreducible representation of an involutive quantale that was introduced
in (Mulvey and Pelletier, 2001) provides a definition of “point” of a quantale that
coincides, in the case of locales, with the usual notion of point. More precisely,
we take a point to be (the equivalence class of) any such representation.

In the case of the quantale Max A, the points provide a complete classifi-
cation of the irreducible representations of a unital C*-algebra A, in the sense
of a bijective correspondence between the points of Max A and the equivalence
classes of irreducible representations of A. In fact, the result actually proved in
(Mulvey and Pelletier, 2001) is that this is the case exactly for those points for
which there exists a pure state of the C*-algebra of which the kernel is mapped
properly by the representation, it being conjectured that this is indeed the case for
every algebraically irreducible representation of Max A. The sup-lattices on which
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Max A acts are in this case shown to be those of projections of the Hilbert spaces
on which A is irreducibly represented. In contrast, representations on complete
atomic Boolean algebras are called relational. They are important in computer
science, where they can be identified with concurrent systems (Resende, 2000,
2001, 2002).

In order to obtain better insight into the relation between quantales and C*-
algebras, in this paper we look, albeit preliminarily, at a specific example. Various
situations of a geometrical nature have been studied successfully using operator
algebra techniques in the context of Connes’ noncommutative geometry (Connes,
1994). Many such situations arise when taking quotients of topological spaces of
which the quotient topology carries insufficient information or is even trivial. An
example of this kind, and the one with which we shall be concerned, is that of
the space of Penrose tilings of the plane (see Section 2), which can be construed
as a quotient of Cantor space (more precisely, of a subspace K of Cantor space
homeomorphic to it), giving rise to an AF C*-algebra A whose dimension group
Z + τZ (where τ is the golden number (1 + √

5)/2) contains information about
the frequencies of appearance of finite patterns in an arbitrary tiling, and whose
equivalence classes of irreducible representations can be identified with the tilings
themselves—we can say that A classifies the tilings in the sense that the irreducible
representations of A “are” the tilings.

Of course, then the quantale Max A also classifies the tilings, but in this
paper we use the logical ideas discussed above in order to define, in Section 3, a
quantale Pen motivated directly by the geometry of the tilings, and in Sections 5
and 6 we show that Pen also classifies them because its relational points correspond
bijectively to the tilings. An important difference between Max A and Pen is thus
that the points of the former are representations on lattices of projections of Hilbert
spaces, whereas for the latter we restrict to representations on powersets. In this
way Pen provides a kind of “dynamical” space that we may see metaphorically
as a “quantum space without superposition.” The relation between Pen and A is
currently being studied, but will not be addressed here.

This paper also provides insights into the nature of the notion of point of an
involutive quantale, because on the one hand it contains results of independent in-
terest concerning relational representations, in particular a decomposition theorem
showing that any relational representation is uniquely partitioned into irreducible
components (Section 4), while on the other it allows us to see, in the setting of
relational representations and in a very explicit example, the way in which al-
gebraically irreducible representations differ from those representations that are
only irreducible. Although it has been proposed elsewhere (Pelletier and Rosický,
1997) (see also Kruml, 2002) that these latter should also be considered as giving
rise to points of an involutive quantale, we see in this context that they fail to yield
the intended classification of tilings, just as in the case of the spectrum Max A

of a C*-algebra A the intended points of the spectrum, namely the algebraically
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irreducible representations on Hilbert space, seem to require consideration of the
algebraically irreducible representations of the quantale Max A.

In the present case, this classification arises very explicitly from a relational
representation of Pen on Cantor space (rather, on its subset K mentioned above),
of which the irreducible components are necessarily algebraically irreducible and
coincide precisely with the equivalence classes obtained when the set of tilings
is viewed as a quotient of K . Hence, in particular, the identification of the set of
Penrose tilings with a quotient of K is intrinsically contained in the representation
theory of Pen.

We conclude this introduction by recalling some basic definitions:
By a sup-lattice S is meant a partially ordered set, each of whose subsets

X ⊆ S has a join ∨X ∈ S. Hence, in particular, a sup-lattice is in fact a complete
lattice.

By a sup-lattice homomorphism is meant a mapping h : S → S ′ between
sup-lattices that preserves all joins:

h
(∨

X
) =

∨
{h(x) | x ∈ X}

for all X ⊆ S.
By a quantale Q is meant a sup-lattice, together with an associative product,

&, satisfying

a&

(∨
i

bi

)
=

∨
i

(a&bi)

and (∨
i

ai

)
&b =

∨
i

(ai&b)

for all a, b, ai, bi ∈ Q. The bottom element ∨∅ of Q is denoted by 0, and the
top element ∨Q is denoted by 1. The quantale Q is said to be unital provided that
there exists an element e ∈ Q for which

e&a = a = a&e

for all a ∈ Q.
By an involutive quantale is meant a quantale Q together with an involution,

∗, satisfying the conditions that

a∗∗ = a,

(a&b)∗ = b∗&a∗,(∨
i

ai

)∗
=

∨
i

a∗
i
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for all a, b, ai ∈ Q. An element a ∈ Q for which a∗ = a is said to be self-adjoint.
By a homomorphism of quantales h : Q → Q′ is meant a sup-lattice homo-

morphism that also preserves multiplication,

h(a&b) = h(a)&h(b)

for all a, b ∈ Q. The homomorphism is said to be strong provided that

h(1Q) = 1Q′ ,

to be unital provided that

h(eQ) ≥ eQ′ ,

and to be strictly unital provided that

h(eQ) = eQ′ .

A homomorphism h : Q → Q′ of involutive quantales is said to be involu-
tive provided that h(a∗) = h(a)∗ for all a ∈ Q. In this paper all quantales and
homomorphisms are assumed to be involutive and unital.

2. PENROSE TILINGS

We begin by recalling the facts that we shall need about Penrose tilings.
Generically, a tiling of the plane (which for convenience we identify with the
complex plane) is a covering

T = (Ti)i∈I

of the plane by connected closed subsets, satisfying suitable conditions
(Grümbaum and Shepard, 1989). In the case of Penrose tilings we shall make those
conditions explicit in a moment. It may be remarked that we may define, on the set
of all the tilings of the plane, an action of the (additive group of) complex numbers
by translation: for each tiling T and each z ∈ C define T + z to be the family
(Ti + z)i , where Ti + z is given by pointwise addition {w + z ∈ C | w ∈ Ti}.

The Penrose tilings that we shall be considering, which form a set that is
closed under the action by translations just described, use only two basic shapes:
namely, the two triangles depicted in Fig. 1.

The vertices of these triangles are coloured and some edges are oriented
as shown, and in a tiling both the colours of the coinciding vertices and the
orientations of the coinciding edges must agree. The triangle LA is the large tile
and SA is the small tile, where large and small refer to their respective areas. It
is known that the whole plane can be tiled in this way (Grümbaum and Shepard,
1989).

A feature of this kind of tiling is that they possess a certain invariance of
scale whereby each tiling determines a denumerable family of other tilings, as we
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Fig. 1. Basic tiles of a Penrose tiling (τ = (1 + √
5)/2).

now explain. First, notice that for the configuration of Fig. 2 we can, by removing
the edge between the small and the large tile, produce a new tile congruent to SA,
with the colours of the vertices and the orientations shown.

It is now possible, following the same rules as before, to tile the whole plane
using this tile and LA, which are now named LB and SB, respectively, because LA

has become the smaller tile. The subscript B refers to the new type of tiling, which
differs from the previous one (type A) both due to the relative sizes of the two
triangles, and to the different arrangements in the colours of their vertices and the
orientations of their edges. Figure 3 shows both a fragment of a tiling of type A
and the same fragment after edges were removed so as to obtain a tiling of type B.

There is another important aspect to bear in mind, namely that each tile of
the original tiling is contained in a unique tile of the new tiling, which we refer to
as its successor. More than that, the successor of a large tile can be large or small,
but the successor of a small tile must necessarily be large.

In the same way that we delete certain edges between tiles of type A in order
to obtain those of type B, we may delete certain edges between tiles of type B in

Fig. 2. Constructing the two type B tiles.
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Fig. 3. Left: Finite fragment of a Penrose tiling. Right: Same fragment after edges
were deleted so as to obtain a tiling by type B tiles.

order to obtain larger tiles and yet another tiling of the plane. Furthermore, this
procedure can be continued indefinitely, yielding a sequence of tilings (Tn)n∈N,
where each Tn is said to be a tiling of level n (levels 0 and 1 correspond to the
tilings of type A and B, respectively). Similarly to the passage from type A to
type B, each tile of level n must be contained in a unique tile of level n + 1,
again called its successor, and the successor of a small tile must necessarily be a
large tile, whereas the successor of a large tile can be either small or large; it is
small precisely if it coincides with the large tile of level n. In order to make our
notation more concise we shall denote the successor of a tile T by s(T ). Successors
commute with translations, i.e., s(T + z) = s(T ) + z for any tile T and any z ∈ C.

Given such a tiling and a point z on the complex plane located in the interior
of a tile T (at level zero), we define a sequence z̃ of zeros and ones as follows:

z̃n =
{

0 if sn(T ) is large at level n

1 if sn(T ) is small at level n.

Since every small tile at a level n becomes part of a large tile at level n + 1 we
conclude that the sequence z̃ has the property that every 1 must be followed by a 0.

Definition 2.1. By a Penrose sequence is meant a sequence s ∈ {0, 1}N satisfying
the condition that

sn = 1 implies that sn+1 = 0

for all n ∈ N. The set of all Penrose sequences is denoted by K .
It may be shown that any Penrose sequence can be obtained as described

above from a Penrose tiling, and that two sequences s and t are obtained from two
points on the same tiling if, and only, if they are equivalent in the following sense
(Grümbaum and Shepard, 1989):

Definition 2.2. The Penrose sequences s and t are said to be equivalent, written
s ∼ t , provided that for some m ∈ N one has that sn = tn for all n ≥ m. (Equiva-
lently, s and t differ only in finitely many places.)

These facts lead to the identification of the set of Penrose tilings with the
quotient set K/∼ of the set K determined by this equivalence relation. In fact, K

is naturally equipped with a topology that is generated by subbasic open sets of
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the form

U (n, b) = {s ∈ K | sn = b}

for each n ∈ N and b ∈ {0, 1}. This is the subspace topology obtained from
the Cantor topology by identifying {0, 1}N with Cantor space, and indeed K is
homeomorphic to Cantor space. However, considering K as a topological space
rather than just a set is of no use from the point of view of Penrose tilings, because
all the equivalence classes are dense and hence the quotient topology is trivial.
This provides one of the motivations for considering the set of Penrose tilings
instead as a generalised kind of topological space, for instance by identifying it
with a C*-algebra that plays the rôle of a “noncommutative space,” as in (Connes,
1994).

3. A THEORY OF PENROSE TILINGS

In order to treat the set of Penrose tilings as a quantale, let us present one
by means of propositions and axioms of a logical theory which is noncommu-
tative in the sense that conjunction is a noncommutative connective. To a great
extent this section will be devoted to providing some level of intuitive motiva-
tion for the axioms we choose, and as such it is not entirely mathematical. The
reader who does not wish to be distracted by such considerations may read the
definition of the theory below, and move directly to Section 4. The results in
Sections 5 and 6 can also be regarded as an a posteriori justification for the ax-
ioms, at which point the motivational reasoning takes on a more mathematical
significance.

The propositions of the theory with which we are concerned should be viewed
as representing “experiments,” or “measurements,” by means of which we as
observers learn about the structure of a particular, but arbitrary, Penrose tiling.
Furthermore, the tiling being studied remains fixed, up to translations, during the
whole series of experiments. Each proposition is built by applying appropriate
connectives to primitive propositions. We list the primitive propositions below,
followed in each case by the description of the experiment that it represents. In
each case we denote by nT the tile of level n that contains the origin of the plane.
Throughout we restrict to tilings for which 0 does not lie on an edge or a vertex
of any tile of level zero (hence, of any tile of any level):

• 〈L(n)| — perform a random translation z ∈ C (or sequence of translations
whose sum is z ∈ C) such that in the end the origin of the plane remains in
the successor of nT , i.e., 0 ∈ s(nT + z), without ending, as stressed above,
on an edge or a vertex of any tile; the experiment succeeds if the origin is
found inside a large tile of level n after the translation takes place.
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• 〈S(n)| — analogously, but with the origin being found inside a small tile
after the translation; notice that this experiment never succeeds in those
cases where nT is large and s(nT ) = nT .

• |L(n)〉 — this experiment is the dual (in the sense of temporal reversal) of
〈L(n)|; it succeeds if nT is a large tile at level n, in which case the tiling
is translated randomly, with the only restriction being that the origin must
remain inside s(nT ) (and, as before, not on an edge or vertex).

• |S(n)〉 — similar to the previous case, but with nT being small.

It should be noted that we have here, in order to make their interpretation explicitly
available, considered both 〈L(n)| and |L(n)〉 as primitive propositions, and similarly
for 〈S(n)| and |S(n)〉, although the axioms that we shall now introduce identify these
as being obtained each from the other by applying the logical operator of temporal
dual introduced below. Of course, the theory may equivalently be presented just
in terms of the primitive propositions 〈L(n)| and 〈S(n)|.

Based on this geometric interpretation of the primitive propositions we may
now elicit some axioms relating them. As stated above we shall use a conjunctive
connective, &, meaning “and then,” where

a&b

is the experiment that consists of performing first a and then b, together with a
disjunctive connective, ∨, which can be infinitary (or, more precisely, a family of
disjunctive connectives, one for each arity), where∨

i∈I

ai

is the experiment that consists of performing ai for some i ∈ I . Finally, we intro-
duce a “temporal dual”

a∗

for each proposition a, with the dual of 〈L(n)| being |L(n)〉, with 〈S(n)| similarly
having dual |S(n)〉. For an introduction to the logical background for this non-
commutative propositional logic the reader is referred to (Mulvey, 1986), and
for its application in another context to (Mulvey and Pelletier, 1992; Resende,
2002). A similar context, but without the temporal dual operator, may be found in
(Abramsky and Vickers, 1993; Resende, 1999, 2000, 2001; Resende and Vickers,
2003).

The logic also introduces the truth value false, here representing the impossi-
ble experiment that always fails, together with the truth value true, corresponding
here to the experiment that always succeeds; more precisely, the experiment that ei-
ther produces no translation at all or which, having produced a translation, leaves
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the tiling back in its original position and provides no information whatsoever
about the type of tiles in which the origin is located.

The axioms of the theory will be written in the form

a � b,

meaning that “a implies b”: in this context, that the experiment a is a particular
way of performing the (more general) experiment b. More precisely, this means
that if a succeeds then b succeeds also, and whatever information is extracted from
a could also have been obtained by performing b.

We now provide a list of axioms that gives an intuitive description of the way
in which measurements represented by the primitive propositions relate to each
other. In Section 5 we shall see that, in an appropriate sense, these axioms provide
a complete description of the geometric situation. Throughout, as abbreviations
we write:

• X or Y for either S or L;
• 〈X(n)|Y (m)〉 instead of 〈X(n)|&|Y (m)〉;
• |X(n)〉〈Y (m)| instead of |X(n)〉&〈Y (m)|;
• 〈X1

(n1); . . . ; Xm
(nm)| instead of 〈X1

(n1)|& · · · &〈Xm
(nm)|;

• |X1
(n1); . . . ; Xm

(nm)〉 instead of |X1
(n1)〉& · · · &|Xm

(nm)〉.
We shall also say that a string X0

(0); . . . ; Xn
(n) is admissible if Xi = S entails

Xi+1 = L, for all i ∈ {0, . . . , n − 1}.

Definition 3.1. The theory Pen of Penrose tilings is given by taking the primitive
propositions

〈L(n)| and 〈S(n)| (together with their duals |L(n)〉 and |S(n)〉)
for each n ∈ N, together with the following axioms:

(C1n) 〈L(n)|S(n)〉 � false (Consistency 1)
(C2n) 〈S(n)| � 〈L(n+1)| (Consistency 2)
(D1n) true � 〈L(n)| ∨ 〈S(n)| (Decidability 1)
(D2n) |X(n+1)〉〈X(n+1)| � 〈S(n)| ∨ 〈L(n)| (Decidability 2)
(E1n) 〈Y (n); X(n+1)| � 〈X(n+1)| (Expansion 1)
(E2n) 〈X(n+1); Y (n)| � 〈X(n+1)| (Expansion 2)
(E3n) |Y (n)〉〈X(n+1)| � 〈X(n+1)| (Expansion 3)
(E4n) 〈X(n+1)|Y (n)〉 � 〈X(n+1)| (Expansion 4)
(I1n) |X(n)〉∗ � 〈X(n)| (Involution 1)
(I2n) 〈X(n)|∗ � |X(n)〉 (Involution 2)
(C ′

t ) true � 〈Xn
(n); . . . ; X0

(0)|X0
(0); . . . ; Xn

(n)〉 (Completeness)

for all n ∈ N, all x, y ∈ {S,L}, and all admissible strings t = X0
(0); . . . ; Xn

(n)

with Xn = L. Again, it should be noted that the axioms (I1n) and (I2n) may be
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omitted if the primitive propositions |L(n)〉 and |S(n)〉 are considered to have been
added formally by the logical context.

We shall now justify each of these axioms in terms of the geometric interpre-
tation of the primitive propositions:

(C1n): The proposition 〈L(n)|S(n)〉 consists of performing 〈L(n)| and then |S(n)〉. But
〈L(n)| fails if the tile of level n where the origin is located when the experiment
ends is small, whereas |S(n)〉 fails unless it starts with the origin located in a
small tile at level n. Hence, the sequence of the two experiments always fails,
i.e., it entails the proposition false.

(C2n): The proposition 〈S(n)| succeeds if a translation of the tiling that leaves the
origin inside its original tile of level n + 1 is performed, such that in the end
the origin is found in a small tile at level n. This implies that in the end it is also
located in a large tile of level n + 1, and thus 〈S(n)| is a particular way of doing
the experiment 〈L(n+1)| because on one hand the translation it involves certainly
leaves the origin inside its tile of level n + 2, and when the experiment finishes
the origin is found in a large tile at level n + 1.

(D1n): The experiment true always succeeds, and for an arbitrary n it is either a
particular way of doing 〈S(n)| or of doing 〈L(n)|, because the origin must always
be either in a small tile or in a large tile at level n.

(D2n): The experiment |X(n+1)〉〈X(n+1)| consists of doing |X(n+1)〉 and then
〈X(n+1)|. In either of these two experiments the translations involved leave
the origin inside its triangle at level n + 2, and the whole experiment succeeds
if, and only if, the tile at level n + 1 in which the origin initially lies is of the
same type (large or small) as that where it lies when the experiment ends. Since
inside a tile of level n + 2 there is at most one tile of each type at level n + 1,
we conclude that the translation involved in performing the whole experiment
leaves the origin inside its tile of level n + 1. Hence, if the origin ends up located
in a large tile at level n we will have performed the experiment 〈L(n)|, otherwise
we will have performed 〈S(n)|, which means that |X(n+1)〉〈X(n+1)| is a way of
performing the disjunction of the two.

(E1n): The experiment 〈Y (n); X(n+1)| consists of performing 〈Y (n)| and then
〈X(n+1)|, which means first performing a translation that leaves the origin in its
triangle of level n + 1, inside a triangle of type Y at level n, and then performing
a translation that leaves the origin in its triangle of level n + 2 and in a triangle
of type X at level n + 1. This sequence, of course, provides a particular way of
performing 〈X(n+1)|.

(E2n): Similarly, but 〈X(n+1)| is performed first.
(E3n): Similar to E1n, except that the first translation is performed only if the

origin of the plane is initially inside a triangle of type Y at level n, and after the
first translation it can be in either of the two types at level n.

(E4n): Similar, but 〈X(n+1)| is performed first.
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(I1n) and (I2n): These axioms express that 〈X(n)| is the time reversal of |X(n)〉.
(C ′

t ): In order to understand this axiom, let us first see what the effect of the
experiment 〈Xn

(n); . . . ; X0
(0)| is. Recall that we are assuming that Xn = L.

First, 〈Xn
(n)|, i.e., 〈L(n)|, will translate the tiling and leave the origin inside

its original tile of level n + 1, and in a large tile at level n (notice that this
experiment always succeeds—it might fail if Xn were S instead, which is
why we have ruled out this possibility in the definition of the axiom); then,
〈Xn−1

(n−1)| translates again the tiling, without taking the origin away from the
tile of level n that resulted from the previous experiment, and further leaving it
in a tile of type Xn−1 at level n − 1; this experiment succeeds for any value of
Xn−1 because Xn = L. Proceeding in this way it is clear that each of the steps in
the sequence succeeds (because the sequence is admissible) and that the whole
sequence succeeds if, and only if, it is possible to produce a translation that
does not place the origin outside its tile of level n + 1, in the end placing it in
a tile of type X0 at level 0, which in turn is inside a tile of type X1 at level 1,
etc. The sequence |X0; . . . ; Xn〉 is then the time reversal of this; it succeeds
if and only if the origin is initially in a “tower” of tiles precisely equal to the
one just described. Hence, after 〈Xn

(n); . . . ; X0
(0)| it necessarily succeeds, in

the end producing a translation that will keep the origin in the original tile of
level n + 1, and allowing us to conclude two things: first, this experiment gives
us no information whatsoever about where we are in a tiling (i.e., in which
kind of triangle at each level), either before or after the experiment takes place;
second, a particular way of performing it consists of doing a translation that
places the tiling back in its original position. But the experiment that does such
a translation and provides no information about the kind of tiles where the
origin is located is what we defined to be the primitive proposition true, which
is thus seen to be a particular way of performing 〈Xn

(n); . . . ; X0
(0)|X0

(0); . . . ;
Xn

(n)〉.
By a model of the theory Pen should now be understood, following (Mulvey

and Pelletier, 2001), a quantale Q together with an interpretation of Pen in Q, by
which we mean an assignment to each primitive proposition π of Pen of an element
πQ ∈ Q, validating the axioms of the theory, where the conjunctive connective
is interpreted as multiplication, disjunctions are interpreted as joins, the temporal
dual operator is interpreted as involution, true is interpreted as e, and false as
0. For instance, the axiom (C1n) is validated by such an interpretation if, and
only if, 〈

L(n)
∣∣
Q

&
∣∣S(n)

〉
Q

≤ 0,

and the axiom (D1n) is validated if, and only if,

e ≤ 〈
L(n)

∣∣
Q

∨ ∣∣S(n)
〉
Q
.
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As usual in logic, an interpretation of the theory Pen in Q can be defined
equivalently to be a homomorphism to Q from the Lindenbaum algebra of the
theory. We can think of the latter as being the quantale obtained by taking the set
of propositions in the theory modulo provable equivalence in the theory, partially
ordered by provable entailment in the theory, albeit taking into account that the
“set” of propositions in the theory Pen is actually not a set but rather a proper
class, due to the unbounded arity of disjunction, and that provable entailment
must be defined in terms of possibly infinite derivations, for the same reason
(see Resende, 1999 or Resende, 2000). Concretely, the “Lindenbaum quantale”
of the theory Pen can be constructed in the same way as any quantale which is
presented by generators and relations (see, e.g., Abramsky and Vickers, 1993;
Resende, 2002). This gives us both a quantale and an interpretation of Pen in
it with the appropriate universal property, namely, that any other interpretation
factors through the universal one and a unique quantale homomorphism. (Indeed,
we may take this universal property as the definition of the Lindenbaum quantale.)
With these provisos in mind we define:

Definition 3.2. By the quantale of Penrose tilings will be meant the involutive
unital quantale Pen obtained by taking the Lindenbaum quantale of the theory
Pen, given explicitly by taking the set of propositions in the theory modulo
provable equivalence in the theory, partially ordered by provable entailment in the
theory.

Equivalently, the quantale Pen may be considered to be that whose presen-
tation by generators and relations is obtained from the theory Pen. Explicitly, the
primitive propositions 〈

X(n)
∣∣ (

and
∣∣X(n)〉)

are considered to be the generators of Pen, and each axiom

a � b

is considered to be a defining relation a ≤ b, with the logical connectives inter-
preted as quantale operations in the obvious way, with “and then” as the multipli-
cation, with “disjunctions” as joins, and with “time reversal” as the involution. The
logical constants true and false are interpreted respectively by the multiplicative
unit e and the bottom element 0 of the quantale Pen.

Henceforth, we shall identify each primitive proposition with the element
of the quantale Pen which it determines, using the same symbols and con-
ventions as in the definition of the theory given above to denote the quantale
operations.

By straightforward extensions of the observations made above in motivating
the theory, one has immediately the following:
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Proposition 3.3. The following conditions are validated in the quantale Pen of
Penrose tilings:

1. Each of the axioms of the theory Pen of Penrose tilings;
2. 〈S(n)|L(n)〉 � false;
3. true � |L(n)〉 ∨ |S(n)〉;
4. 〈Y (m); X(n); Z(k)| � 〈X(n)| whenever m, k < n;
5. true � 〈Xn

(n); . . . ; X0
(0)|Xn

(n)〉.

We conclude this section by discussing what would have happened if we had
followed the same line of thinking as above while changing the meaning of the
primitive propositions by requiring them not to produce any translations at all,
in other words in which the experiments have only very limited interaction with
the geometric situation. The aim is to show that this change leads naturally to a
topological space rather than a quantale.

More precisely, we shall think of the primitive propositions exactly in the
same way as before, but restricting the set of available translations to just 0. Hence,
|L(n)〉 and 〈L(n)| will have the same meaning, as measuring the size of the tile after
or before the 0 translation is the same. Each of these primitive propositions just
asserts that the origin of the plane is inside a large tile of level n, and produces no
change at all. Hence, there is no longer any point in distinguishing between them,
and we will just write L(n) for both. Similarly, we will write S(n) for 〈S(n)|, whose
meaning is now the same as that of |S(n)〉. In general, it is clear that we may have
as axioms the following, for any propositions a and b derived from the primitive
ones by means of multiplication, involution and joins:

• triviality of time reversal: a � a∗;
• true is the top: a � true (since any experiment is now a particular in-

stance of true, that is, of doing nothing to a tiling, because it produces no
translations);

• idempotence of “and then”: a � a&a (if we perform an experiment a once
then we can repeat it as many times as we like).

These axioms alone tell us that the quantale presented by the generators
L(n) and S(n), with the axioms as defining relations, is in fact a locale, since any
idempotent quantale whose top is the multiplicative unit is a locale (Joyal and
Tierney, 1984). Let us now add some axioms pertaining to the specific meaning of
the generators. The ones below correspond to the first three of Definition 3.1, and
their justification in the present setting is obvious. Now we write a ∧ b instead of
a&b to emphasize that & is no longer “and then” but instead just “and”:

• L(n) ∧ S(n) � false.
• S(n) � L(n+1).
• true � L(n) ∨ S(n).
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The locale C presented in this way is spatial (because it has a presentation
without infinite joins in the relations and is thus coherent Johnstone, 1982), and
its points can be identified in an obvious way with Penrose sequences: a point
p : C → 2 corresponds to the sequence p̂ defined by

p̂n =
{

0 if p(L(n)) = 1,

1 otherwise.

The axioms ensure that these sequences are well defined. The locale itself is iso-
morphic to the Cantor topology of the set K of Penrose sequences discussed earlier
in this section (the subbasic open sets U (n, 0) and U (n, 1) are the extensions of
the propositions L(n) and S(n), respectively).

From the logical point of view that we have been trying to put forward, the
space of Penrose sequences thus corresponds to the theory of how to observe
an arbitrary Penrose tiling when the origin is located inside a particular tile that
remains fixed. In view of this, it is only natural that each tile gives rise to a different
model of the theory, i.e., a different point of the space. With hindsight, then, we
may regard the presentation of the locale C by generators and relations as being a
theory of Penrose sequences themselves, which is made obvious if we replace the
symbols L(n) and S(n) by the assertions

(sn = 0) and (sn = 1),

respectively, concerning a generic Penrose sequence s:

• (sn = 0) ∧ (sn = 1) � false.
• (sn = 1) � (sn+1 = 0).
• true � (sn = 0) ∨ (sn = 1).

To conclude, we look again at the axioms of Definition 3.1. Besides the first
three, which made their way into the presentation of the locale C, all the others
except the completeness axiom become trivial. As examples we point out the
following two:

• the first expansion axiom just states that X(n) ∧ Y (n+1) ≤ Y (n+1), which of
course is true in any locale;

• the second decidability axiom is equivalent to the condition

X(n+1) ≤ L(n) ∨ S(n),

which now follows from the first decidability axiom and the fact that true
is the top, for X(n+1) ≤ true ≤ L(n) ∨ S(n).

Hence, we see that most of the axioms are essentially “local” in character.
The only exception is the completeness axiom, which in a locale would entail that
for all primitive propositions X(n) we must have true ≤ X(n). The locale presented



670 Mulvey and Resende

in this way has only two elements, i.e., it is the topology of the space with only
one point, and thus we see that the completeness axiom is the only one that makes
a truly non-local assertion about Penrose tilings, leading us to the same trivial
topology that one obtains when trying to describe the space of Penrose tilings as
a quotient of Cantor space.

Another way of expressing this is to observe that consideration of the natural
equivalence that arises between Penrose tilings under symmetries of the plane
is intrinsically incompatible with the concept of topological space in its usual
commutative sense, or indeed the concept of locale which is its constructive
counterpart. To allow its expression, one needs to work with noncommutative
spaces, in this context by bringing in the concept of quantale, hence equivalently
by working within the context of noncommutative logic.

4. REPRESENTATION THEORY OF QUANTALES

In this section we first recall some basic facts and definitions about repre-
sentations of quantales, and then study relational representations, which are the
ones that we shall need in this paper. We remark that relational representations
are well behaved, in the sense that they can always be decomposed into irreducible
components (Theorem 4.7), in such a way that in order to describe completely the
relational representations of any quantale it suffices to know those that are irre-
ducible. This situation does not hold in general for other kinds of representations
of quantales.

Let S be an orthocomplemented sup-lattice, by which we mean a sup-lattice
equipped with an antitone automorphism x �→ x⊥ satisfying the following two
conditions:

x = x⊥⊥,

0 = x ∧ x⊥.

We write x ⊥ y, and say that x and y are orthogonal, if x ≤ y⊥ (equivalently, y ≤
x⊥). As examples of this we note in particular the sup-lattice P(H ) of projections
of a Hilbert space H , with the usual orthogonal complement, and the powerset
P(X) of any set X, with the set-theoretic complement Y �→ X \ Y .

The setQ(S) of all the sup-lattice endomorphisms of S is a quantale under the
pointwise ordering, with multiplication given by composition, and the involution
defined adjointly by

f ∗(y)⊥ =
∨

{x ∈ S | f (x) ≤ y⊥}.
The reader is referred to (Mulvey and Pelletier, 1992; Mulvey and Pelletier, 2001;
Mulvey and Pelletier, 2002; Pelletier and Rosický, 1997; Resende, 2004) for
background discussion of quantales of this kind.
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By a representation of a quantale Q on the orthocomplemented sup-lattice S

is meant a homomorphism

r : Q → Q(S).

Choosing the multiplication in Q(S) to be f &g = g ◦ f , from the representation
r we obtain, for each x ∈ S and a ∈ Q, an action of a on x given by xa = r(a)(x).

In this way, we obtain from any representation of a quantale Q on an or-
thocomplemented sup-lattice S, a right action of Q on S in the usual sense of
a semigroup acting on a set, which moreover preserves both the joins of Q and
those of S: (∨

i

xi

)
a =

∨
i

(xia),

x

( ∨
i

ai

)
=

∨
i

(xai),

thereby making S a right Q-module. This module is unital, meaning that xe ≥ x for
all x ∈ S, since the homomorphism defining the representation is assumed unital.
It is evidently strictly unital, in the sense that xe = x for all x ∈ S, precisely if the
representation is strictly unital.

The fact that r is an involutive homomorphism can be restated equivalently
by saying that S is an involutive right Q-module (Resende, 2004), i.e., a right
Q-module satisfying the condition

xa ⊥ y ⇐⇒ x ⊥ ya∗

for all x, y ∈ S and all a ∈ Q.
By a homomorphism of right Q-modules f : S → S ′ is meant a sup-lattice

homomorphism that commutes with the action:

f (xa) = f (x)a

for each x ∈ S and a ∈ Q. For further facts concerning involutive quantale mod-
ules and their homomorphisms see (Resende, 2004).

Given any representation r : Q → Q(S), by an invariant element of the
representation is meant an element x ∈ S with the property that

x1 ≤ x.

Evidently this is equivalent to requiring that xa ≤ x for each a ∈ Q. It is also
equivalent in the present context, since the representation is a unital homomor-
phism, to requiring simply that

x1 = x.
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The representation is said to be irreducible if S is non-zero and there are no
invariant elements besides 0 and 1. The latter condition is equivalent by a straight-
forward argument to the representation being strong, that is, that r(1Q) = 1Q(S).
The invariant elements of Q, when Q is viewed as a right module over itself, are
evidently the right-sided elements of Q.

By a cyclic generator of a representation r : Q → Q(S) is meant an element
y ∈ S for which one has that

{ya ∈ S | a ∈ Q} = S.

In the case when S is non-zero and atomic as a sup-lattice, the representation is said
to be algebraically irreducible provided that each of its atoms is a cyclic generator
(Mulvey and Pelletier, 2001). Any algebraically irreducible representation of a
quantale is necessarily irreducible.

By an equivalence of representations from a representation r : Q → Q(S) to
r ′ : Q → Q(S ′) is meant an isomorphism of right Q-modules f : S → S ′ which
is an “isometry” in the sense that it preserves and reflects orthogonality:

x ⊥ y ⇐⇒ f (x) ⊥ f (y)

for all x, y ∈ S. The representations are said to be equivalent if there is an equiv-
alence between them.

The importance of the notion of algebraic irreducibility lies in the observation
(Mulvey and Pelletier, 2001) that for the quantale Max A associated to a unital C*-
algebra A there is a bijective correspondence, up to equivalence of representations,
between the irreducible representations of A and the algebraically irreducible rep-
resentations of Max A, which are thus regarded as the “points” of Max A. It may be
noted that at present this correspondence holds only up to a conjecture, equivalent
to asking (Resende, 2004) that for each algebraically irreducible representation of
Max A the annihilator

ann(x) =
∨

{a ∈ Max A | xa = 0}

of at least one cyclic generator x ∈ S is a maximal right-sided element of Max A.
The precise form of the conjecture in (Mulvey and Pelletier, 2001) is in terms of
the non-triviality of the representation with respect to the mapping of pure states.

In the present context, we shall be interested in the particular case of repre-
sentations on orthocomplemented sup-lattices of the form P(X) for a set X. As
we shall see, these representations are well behaved in the sense that they can
always be decomposed in a unique way into irreducible components. We begin by
remarking that each sup-lattice endomorphism

f : P(X) → P(X)
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determines a binary relation Rf on X defined by

xRf y ⇐⇒ y ∈ f ({x})
for each x, y ∈ X. Conversely, each binary relation R on X determines a sup-
lattice endomorphism fR : P(X) → P(X) by defining

fR(Z) =
⋃
z∈Z

{x ∈ X | zRx}

for each element Z ∈ P(X), giving a bijective mapping from the quantaleQ(P(X))
to the sup-lattice P(X × X). It is verified straightforwardly that with respect to the
natural structure of quantale on the sup-lattice P(X × X), namely the partial order
given by inclusion of binary relations, the multiplication given by composition,
R&S = S ◦ R, the unit e given by the identity relation �X, and the involution
given by reversal,

R∗ = {(y, x) ∈ X × X | xRy},
this mapping yields an isomorphism of quantales from the quantale of sup-
preserving mappings from P(X) to itself to the quantale P(X × X) of binary
relations on the set X, leading to the following:

Definition 4.1. Let X be a set. By the relational quantale determined by X will
be meant the quantale

Q(X)

of sup-preserving endomorphisms of the orthocomplemented sup-lattice P(X),
which we will identify henceforth with the quantale P(X × X) of binary relations
on the set X.

By a relational representation of a quantale Q on a set X will be meant a
homomorphism

r : Q → Q(X)

from Q to the relational quantale Q(X) determined by X.
By a state of the representation will be meant an element x ∈ X. For any

a ∈ Q, and any states x, y ∈ X, we shall usually write

x〈a〉y
to denote that (x, y) ∈ r(a).

A representation will be said to be faithful provided that it is a homomorphism
that is injective.

Let Q be a quantale and X a set. Then it may be remarked that a mapping
r : Q → Q(X) is a relational representation exactly if the following conditions
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hold for all x, y ∈ X, a, b ∈ Q, and � ⊆ Q:

x〈e〉x,

x〈a&b〉y ⇐⇒ x〈a〉z〈b〉y for some z ∈ X,

x〈∨ �〉y ⇐⇒ x〈a〉y for some a ∈ �,

x〈a∗〉y ⇐⇒ y〈a〉x.

Furthermore, the representation r is strictly unital if, and only if, the first condition
is strengthened to

x〈e〉y ⇐⇒ x = y

for all x, y ∈ X. From these conditions, and from the fact that 1 is always self-
adjoint and idempotent, it follows that r(1) ⊆ X × X is an equivalence relation on
X, and that furthermore x〈1〉y holds if, and only if, x〈a〉y holds for some a ∈ Q,
since 1 = ∨Q, leading to the following:

Definition 4.2. Let Q be a quantale, X a set, and let r : Q → Q(X) be a
relational representation. Then the states x, y ∈ X will be said to be connected in
the representation provided that

x〈1〉y.

The representation itself will be said to be connected if

r(1) = X × X,

and deterministic provided that for each pair of connected states x, y ∈ X there
is an element a ∈ Q such that

{x}a = {y}.
It may be remarked that:

Proposition 4.3. Any relational representation

r : Q → Q(X)

that is deterministic is necessarily strictly unital.

Proof: Let x and y be states of a deterministic representation such that
x〈e〉y, and let a be such that {y}a = {x}. Then y〈a&e〉y, hence y〈a〉y, and
thus x = y. �

Moreover, it may be noted that for the particular case of relational represen-
tations one has the following characterisations of familiar concepts:
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Proposition 4.4. Let Q be a quantale, X a set, and let r : Q → Q(X) be a
relational representation on the set X.

1. The representation is irreducible if, and only if, it is connected.
2. The representation is algebraically irreducible if, and only if, it is both

irreducible and deterministic.
3. Let r ′ : Q → Q(X′) be another relational representation. Then r and r ′

are equivalent if, and only if, there exists a bijective mapping f : X → X′

such that
x〈a〉y ⇐⇒ f (x)〈a〉f (y)

for all x, y ∈ X and a ∈ Q.

Proof:

1. Connectedness is obviously equivalent to irreducibility, since it states that
r(1) equals X × X, that is, r is strong.

2. Equally obviously.
3. If such a bijection exists then its sup-preserving extension f � : P(X) →

P(X′) is an isomorphism of sup-lattices, and we obtain, for all a ∈ Q and
Y ∈ P(X),

f �(Ya) = f �(
⋃

y∈Y {x ∈ X | y〈a〉x}
= ⋃

y∈Y {f (x) | f (y)〈a〉f (x)} = ⋃
w∈f �(Y ){z ∈ X′ | w〈a〉z} = f �(Y )a;

that is, f � is an isomorphism of right Q-modules. Finally, orthogonality in P(X)
is defined by Y ⊥ Z ⇐⇒ Y ∩ Z = ∅, and thus it is preserved and reflected by
f �. �

With these preliminaries, we may now consider the decomposition of any
relational representation into its irreducible components, noting first the following:

Lemma 4.5. Let (Xi)i∈I be a family of sets indexed by a set I . Then the direct
product

Q =
∏
i∈I

Q(Xi)

has a canonical representation on the disjoint union X = ∐
i∈I Xi , which is defined

by inclusion and is faithful.

Proof: Assume for simplicity that the sets Xi are pairwise disjoint (if not, turn
the representations into equivalent ones by labelling the states of each Xi with
i), let X = ⋃

i∈I Xi , and define a map κ : Q → Q(X) by κ(a) = ⋃
i∈I Ri , for
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all a = (Ri)i∈I ∈ Q. Then κ clearly is strictly unital, it preserves joins, and it
preserves involution. It also preserves multiplication, which is most easily seen
by representing binary relations as matrices with entries in the two element chain
(i.e., matrices of zeros and ones with addition replaced by the operation of taking
binary joins) and κ as the map that sends each family of matrices as blocks into
a large matrix indexed by X × X; then multiplication being preserved just means
that the multiplication of two such block matrices is computed blockwise. �

Definition 4.6. Let Q be a quantale, and let (ri : Q → Q(Xi))i∈I be a family of
relational representations indexed by a set I . By the sum of the representations,
denoted by

r =
∐
i∈I

ri ,

will be meant the relational representation of Q on the disjoint union
∐

i∈I Xi

defined by

r(a) = κ((ri(a))i∈I ),

where κ is the canonical representation of
∏

i∈I Q(Xi) on
∐

i∈I Xi .
These definitions now lead to the following evident conclusion:

Theorem 4.7. Let Q be a quantale with a relational representation

r : Q → Q(X)

on a set X. Then r : Q → Q(X) admits a canonical decomposition into a sum
of irreducible representations, one on each connected component of X. Further-
more this decomposition is unique up to equivalence of representations, and the
irreducible representations are all algebraically irreducible if, and only if, the
relational representation r : Q → Q(X) is deterministic.

It may be noted in passing that this situation is evidently a particular aspect
of relational representations, which simplifies considerably our discussion from
this point.

5. THE RELATIONAL REPRESENTATIONS OF Pen

In this section we begin to study the points of the quantale Pen. Contrary to
the situation for quantales of the form Max A, where we are concerned with points
that are representations on sup-lattices of projections of Hilbert spaces, we shall
see that for Pen the “natural” points are relational representations. Indeed, these
are the only points we shall study, in particular concluding that they correspond
bijectively with Penrose tilings. No other points of the quantale Pen are known.



A Noncommutative Theory of Penrose Tilings 677

It should be emphasised that, because of its particular properties, at one time
both very different from quantales of the form Max A but closely related to them
through the C*-algebra A introduced by Connes, our interest is almost as much
in the light that the quantale Pen can throw on the concept of point as on the
information that points can contribute to the study of the theory Pen of Penrose
tilings. For this reason, we begin by examining more closely the weaker concept
of an irreducible representation of the quantale Pen on the powerset of a set X,
building concretely on the results of the previous section.

The first step will be to show that for any relational representation

r : Pen → Q(X)

of the quantale Pen there is a natural way in which a Penrose sequence seq(x) can
be assigned to each state x of the representation (Definition 5.2). In order to do
this we need the following preliminary lemma, where in order to simplify notation
we omit angular brackets in expressions like x〈〈X(n)|〉y, writing instead x〈X(n)|y
to mean that (x, y) ∈ r(〈X(n)|) for a representation r of Pen. For instance, this
gives us the following convenient equivalence:

x
〈
X(n)

∣∣y ⇐⇒ y
∣∣X(n)

〉
x.

These simplifications will be used without further comment through the rest of
the paper.

Lemma 5.1. Let r : Pen → Q(X) be a relational representation of the quantale
Pen on a set X. Then for any x ∈ X and all n ∈ N, the following conditions are
equivalent:

1. x〈L(n)|x;
2. not x〈S(n)|x;
3. y〈L(n)|x for some y ∈ X;
4. y〈S(n)|x for no y ∈ X.

Furthermore, if x〈S(n)|x then x〈L(n+1)|x.

Proof: Since for any x ∈ X we always have x〈e〉x, the axiom D1n of Definition
3.1 tells us that either x〈L(n)|x or x〈S(n)|x. If we had both x〈L(n)|x and x〈S(n)|x
then we would also have x|S(n)〉x and x〈L(n)|S(n)〉x, which is impossible due to
axiom C1n. Hence, the first two conditions are equivalent. The first condition
implies the third trivially, and the third implies the first because y〈L(n)|x〈S(n)|x
implies y〈L(n)|S(n)〉x, which is impossible, again due to C1n, and thus if y〈L(n)|x
we must have x〈L(n)|x. In a similar way we prove that the second and the fourth
conditions are equivalent to each other. Finally, x〈S(n)|x entails, by axiom C2n,
the condition x〈L(n+1)|x. �
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Definition 5.2. Let X be a set, let r : Pen → Q(X) be a relational representation,
and let x ∈ X. Then by the tiling sequence of x will be meant the Penrose sequence
seq(x) defined by

seq(x)n =
{

0 if x〈L(n)|x
1 if x〈S(n)|x

for each n ∈ N.
Now we show, in the following two lemmas, that the transitions induced by

primitive propositions, x〈X(n)|y, are determined entirely by the sequences seq(x)
and seq(y), provided that the states x and y are connected (i.e., that x〈1〉y).

Lemma 5.3. Let X be a set, let r : Pen → Q(X) be a relational representation,
and let x, y ∈ X. The following conditions are equivalent:

1. x〈1〉y;
2. x〈X(n)|y for some generator 〈X(n)|.

Furthermore, if x〈X(n)|y then seq(x)k = seq(y)k for all k > n. (Hence, seq(x) ∼
seq(y).)

Proof: The second condition implies the first because 〈Z(m)| ≤ 1 for any Z

and m. So let us assume that x〈1〉y. This condition means that for some string
x1 · · · xr , where each xi is a quantale generator 〈Z(m)| or |Z(m)〉, we have x〈a〉y
for a = x1& · · · &xr . Define the degree deg(x1 · · · xr ) of each such string to be
max{deg(x1), . . . , deg(xr )}, where for the generators we define deg(〈Z(m)|) =
deg(|Z(m)〉) = m. Let then x〈a〉y for a as above, and let n = deg(a) + 1. We
must have y〈X(n)|y for X equal either to S or L, and thus x〈a&〈X(n)|〉y. But from
the expansion axioms of Definition 3.1 it follows that a&〈X(n)| ≤ 〈X(n)| in Pen,
and thus x〈X(n)|y, thus proving 1 ⇒ 2. Now let k > n. Then y|Y (k)〉y for some Y ,
whence x〈X(n)|Y (k)〉y. By repeated application of one of the expansion axioms we
obtain 〈X(n)|Y (k)〉 ≤ |Y (k)〉 in Pen, and thus x|Y (k)〉y. This implies that x〈Y (k)|x,
for otherwise we would have x〈Z(k)|Y (k)〉y with Z �= Y , which is impossible be-
cause 〈Z(k)|Y (k)〉 = 0 if Z �= Y , due to one of the consistency axioms. Hence, we
conclude that seq(x)k = seq(y)k . �

Lemma 5.4. Let X be a set, let r : Pen → Q(X) be a relational representation,
and let x, y ∈ X be such that x〈1〉y. Then, we have x〈L(n)|y (resp. x〈S(n)|y) if,
and only if, we have both seq(y)n = 0 (resp. seq(y)n = 1) and seq(y)k = seq(x)k
for all k > n.

Proof: The forward implication is an immediate consequence of the previous
lemma. For the reverse implication, assume that we have both seq(y)n = 0 (resp.
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seq(y)n = 1) and seq(y)k = seq(x)k for all k > n. Since we are assuming that
x〈1〉y, we have x〈X(m)|y for some generator 〈X(m)|. If m = n then X must be
L (resp. S) due to one of the consistency axioms, and we are done. If m < n

we conclude that x〈L(n)|y (resp. x〈S(n)|y) by applying one of the expansion
axioms (as in the proof of the previous lemma). Now assume that m > n. Then
seq(x)m = seq(y)m, and thus x|X(m)〉x. Hence, we obtain x|X(m)〉〈X(m)|y, and by
applying the second decidability axiom we conclude that x〈L(m−1)|y or x〈S(m−1)|y
(the choice of which is determined by the value of seq(y)m−1). The proof follows
by induction on m − n. �

The previous two lemmas describe completely the transitions x〈a〉y of Pen
between any pair of connected states x and y of the set X. The following lemma
improves this by showing that there must be “as many states as possible”, i.e., each
irreducible component must be saturated with respect to equivalence of Penrose
sequences.

Lemma 5.5. Let X be a set, let r : Pen → Q(X) be a nonempty relational
representation, and let x ∈ X. Then for any Penrose sequence s such that s ∼
seq(x), there must be a state y ∈ X such that s = seq(y).

Proof: Let sn = seq(x)n for all n > m ∈ N, and consider the product of quantale
generators 〈Xm

(m); . . . ; X0
(0)|X0

(0); . . . ; Xm
(m)〉, where for each i ∈ {0, . . . , m}

we have Xi = L if, and only if, si = 0. Without loss of generality we may assume
that Xm = L (if not, replace m by m + 1), and the completeness axiom tells
us that (x, x) ∈ r(〈Xm

(m); . . . ; X0
(0)|X0

(0); . . . ; Xm
(m)〉). Hence, there exists a

state y ∈ X such that (x, y) ∈ r(〈Xm
(m); . . . ; X0

(0)|), and from Lemma 5.4 it is
immediate that si = seq(y)i for all i ∈ {0, . . . , m}, and thus for all i ∈ N. �

Taking these results together, we have established the following result:

Theorem 5.6. Any relational representation r : Pen → Q(X) of the quantale
Pen on a set X determines a mapping

seq : X → K

from the set X to the set K of Penrose sequences by assigning to each x ∈ X the
sequence defined by

seq(x)n =
{

0 if x〈L(n)|x
1 if x〈S(n)|x

for each n ∈ N, in such a way that each connected component of X is mapped
surjectively onto an equivalence class of Penrose sequences.
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Applying this to the case of an irreducible representation, characterised by the
set X having a single connected component, we have the following observation:

Corollary 5.7. For any irreducible representation of Pen on a set X, one has
that:

1. the subset {seq(x) ∈ K | x ∈ X} is an equivalence class of Penrose se-
quences, and

2. the action of the quantale Pen on the set X is such that, for any pair of
states x, y ∈ X, we have x〈L(n)|y (resp. x〈S(n)|y) if, and only if, both
seq(y)n = 0 (resp. seq(y)n = 1) and seq(y)k = seq(x)k for all k > n.

To obtain the converse, giving a complete characterisation of the relational
representations of Pen in terms of Penrose sequences, we first make the following:

Definition 5.8. Let X be a set and (Xi)i∈I a family of subsets that partition the
set X. Suppose given a mapping

σ : X → K

such that the image of each subset Xi of the partition is an equivalence class
of Penrose sequences. By the interpretation induced by σ of the theory Pen in
the quantale Q(X) is meant that obtained by assigning to each of the primitive
propositions the relations defined by:〈

L(n)
∣∣
σ

= {(x, y) ∈ � | σ (y)n = 0 and σ (x)k = σ (y)k for all k > n},〈
S(n)

∣∣
σ

= {(x, y) ∈ � | σ (y)n = 1 and σ (x)k = σ (y)k for all k > n},
where � = ∪i∈IXi × Xi is the equivalence relation determined by the partition.

Showing that this interpretation validates the axioms of the theory Pen in the
quantale Q(X) to obtain a relational representation of the quantale Pen on the set
X then yields the following converse to the result already obtained:

Theorem 5.9. Let X be a set and (Xi)i∈I a family of subsets that partition the
set X. Let

σ : X → K

be a mapping for which the image of each subset Xi of the partition is an equiva-
lence class of Penrose sequences. Then the interpretation of the primitive propo-
sitions induced by σ in Q(X) extends in a unique way to an irreducible relational
representation r : Pen → Q(X) for which

seq(x) = σ (x)
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for each x ∈ X. Moreover, any relational representation of Pen arises uniquely in
this way.

Proof: The primitive propositions may be considered to be the generators of
Pen, so to obtain the required homomorphism we have to verify that the defining
relations of Definition 3.1 are respected, i.e., that each of the axioms of the theory
Pen is validated by the given interpretation.

(C1n) Proving that this relation is respected means showing that〈
L(n)

∣∣
σ

&
∣∣S(n)〉

σ
⊆ ∅.

Let then x〈L(n)|σ y|S(n)〉σ z. We have both x〈L(n)|σ y and z〈S(n)|σ y, and thus both
σ (y)n = 0 and σ (y)n = 1, a contradiction. Hence, x〈L(n)|S(n)〉σ z for no two states
x and z.

(C2n) Let x〈S(n)|σ y (hence, x and y are both in the same component of the
partition). Then we have σ (y)n = 1 and σ (x)m = σ (y)m for all m > n. Then also
σ (y)n+1 = 0, because σ (y) is a Penrose sequence, and σ (x)m = σ (y)m for all
m > n + 1, whence x〈L(n+1)|σ y (because x and y are in the same component of
the partition). Hence, we conclude that |S(n)〉σ ⊆ 〈L(n+1)|σ .

(D1n) Let x ∈ X. Then σ (x)n = 0 or σ (x)n = 1, and thus x〈L(n)|σ x or
x〈S(n)|σ x. This is equivalent to (x, x) ∈ 〈L(n)|σ ∪ 〈S(n)|σ , showing that the re-
lation is respected.

(D2n) Let (x, y) ∈ |X(n+1)〉σ &〈X(n+1)|σ . We have σ (x)n+1 = σ (y)n+1 = 0
if X = L, and σ (x)n+1 = σ (y)n+1 = 1 if X = S. In either case, we have
σ (x)n+1 = σ (y)n+1, and thus σ (x)m = σ (y)m for all m > n. Then we either have
x〈S(n)|σ y, if σ (y)n = 1, or x〈L(n)|σ y, if σ (y)n = 0. Hence, we conclude that
|X(n+1)〉σ &〈X(n+1)|σ ⊆ 〈L(n)|σ ∪ 〈S(n)|σ .

(E1n) Let us assume for example that X = L. If (x, y) ∈ 〈Y (n)|σ &〈L(n+1)|σ
then we clearly have both σ (y)n+1 = 0 and σ (y)m = σ (x)m for all m > n + 1,
and thus x〈L(n+1)|σ y. If X = S the conclusion is similar.

(E2n)–(E4n) These are handled in a similar way to the previous one.
(I1n) This just states that x|X(n)〉σ y implies y〈X(n)|σ x.
(I2n) Similarly.
(C ′

t ) Let Xi be an arbitrary subset in the partition and let x ∈ Xi . Consider a
string Xn

(n); . . . ; X0
(0), with each Xk equal to S or L. If this string is admissible in

the sense of Definition 3.1, and Xn = L, then the sequence t : N → {0, 1} defined
by

tk =




σ (x)k if k > n

0 if k = n

0 if k < n and Xk = L

1 if k < n and Xk = S
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is a Penrose sequence, which furthermore is equivalent to σ (x). Hence, there must
exist y ∈ Xi such that σ (y) = t because the image of Xi under σ is a whole
equivalence class of Penrose sequences, and we obtain the following conditions:

x
〈
Xn

(n)
∣∣
σ
y,

y
∣∣Xk

(k)
〉
σ
y for all k < n.

As a consequence we conclude that x〈Xn
(n); . . . ; X0

(0)|σ y, and finally that
x〈Xn

(n); . . . ; X0
(0)|X0

(0); . . . ; Xn
(n)〉σ x, thus showing that

�X ⊆ 〈
Xn

(n); . . . ; X0
(0)

∣∣X0
(0); . . . ; Xn

(n)
〉
σ
.

In consequence, the interpretation determined by the mapping σ : X → K over
the given partition (Xi)i∈I of X determines a relational representation of Pen on
the set X having the required property. The converse, that any such representation
arises in this way from a unique mapping σ , is of course a consequence of
Theorem 5.6. �

It may be remarked that of course any mapping σ : X → K of which the
image is a disjoint union of equivalence classes of Penrose sequences gives rise
to a canonical partition of the set X, namely by taking the inverse images of the
equivalence classes of Penrose sequences. However, not every relational repre-
sentation of the quantale Pen arises in this way, but only those whose canonical
decomposition into irreducible representations admits at most one instance of each
equivalence class of irreducible representations. It is to allow multiplicity of ir-
reducible components that the characterisation of relational representations takes
this more general form.

In the particular case of irreducible representations, we have therefore the
following characterisation:

Corollary 5.10. Any irreducible representation

r : Pen → Q(X)

of the quantale Pen on a set X determines, and is uniquely determined by, a
mapping

σ : X → K

of which the image is an equivalence class of Penrose sequences in such a way
that seq(x) = σ (x) for each x ∈ X.
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6. THE RELATIONAL POINTS OF Pen

In this section we finally describe the relational points of the quantale Pen,
that is to say, the algebraically irreducible representations of Pen on the powerset
lattices of sets. More than that, we see the way in which these points emerge
from the motivating description of the axioms for the noncommutative theory
Pen of Penrose tilings that gives rise to the quantale Pen, along with the Penrose
sequences with which we have been working.

To begin with, we examine the characterisation of relational representations
obtained in the preceding section, in the case of the canonical interpretation given
in terms of translations that was considered informally in introducing the theory
Pen in Section 3, showing that this yields a natural description of the irreducible
representations to which it gives rise.

Example 6.1. The canonical interpretation leads naturally to a relational repre-
sentation of the quantale Pen on the set 	 of all Penrose tilings for which the
origin of the plane does not lie on a vertex or an edge of any tile, by interpreting
the primitive propositions of the theory in the way that we shall now describe.
Denoting by T and T ′ the tiles (of level 0) of T and T

′, respectively, for which
0 ∈ T and 0 ∈ T ′, we write nT and nT ′ for their nth successor tiles sn(T ) and
sn(T ′), respectively: that is to say, the unique tiles of level n that contain the origin
in each tiling. Then, each primitive proposition of the theory Pen is considered to
describe transitions between states T, T

′ ∈ 	, defined by:

• T〈L(n)|T′ if, and only if, T
′ = T + z for some z ∈ C such that 0 ∈ s(nT +

z) and nT ′ is large (at level n);
• T〈S(n)|T′ if, and only if, T

′ = T + z for some z ∈ C such that 0 ∈ s(nT +
z) and nT ′ is small;

• T|L(n)〉T′ if, and only if, nT is large and T
′ = T + z for some z ∈ C such

that 0 ∈ s(nT + z);
• T|S(n)〉T′ if, and only if, nT is small and T

′ = T + z for some z ∈ C such
that 0 ∈ s(nT + z).

The axioms of the theory Pen of Penrose tilings are validated by this canonical
interpretation, yielding in consequence a relational representation of the quantale
Pen on the set 	 whose restriction to primitive propositions is that described
above: we shall refer to this as the geometrical representation,

g : Pen → Q(	),

of the quantale Pen.
In terms of the characterisation of relational representations of the preceding

section, this representation is classified by the mapping

γ : 	 → K
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obtained by assigning to each tiling the Penrose sequence generated by the origin
of the plane, together with the canonical partition (	i)i∈I of the set 	 induced
by the mapping, namely by taking the inverse image of each equivalence class of
Penrose sequences.

It is of course the case in the above example that each subset 	i of the
canonical partition contains tilings of which the equivalence is evident in different
ways: some directly from translations describable in terms of the experiments
represented by the primitive propositions, some dependent additionally on other
operations, such as rotations of the plane, which have not been coded directly
into the experiments concerned. In other words, the geometrical representation
g : Pen → Q(	) to which the canonical interpretation gives rise will decompose
uniquely into irreducible representations gi : Pen → Q(	i) determined by sets,
consisting of all tilings of a particular equivalence class, that contain tilings that
are not related deterministically by the experiments considered. In terms of states,
this means that we have an equivalence of states that arises from symmetries that
have not been addressed. In terms of the representation, this means that while
it decomposes into irreducible representations, these irreducible representations
are not actually algebraically irreducible, a situation that is characterised by the
following:

Theorem 6.2. Let X be a set, and let r : Pen → Q(X) be an irreducible rela-
tional representation on the set X. Then r is algebraically irreducible if, and only
if, the canonical mapping seq : X → K which it determines is injective.

Proof: Assume that r is algebraically irreducible, and let x, y ∈ X be such that
seq(x) = seq(y). Let also a ∈ Pen be a product of generators a = α1& · · · &αn.
We prove that if x〈a〉y then x〈a〉x, by induction on n. If n = 0 (i.e., a = e), then
this is trivial because x〈e〉y implies x = y, since any algebraically irreducible
representation is strictly unital. Let then n > 0, and x〈a〉y. We have a = b&αn,
and thus x〈b〉z〈αn〉y for some z ∈ X. From Theorem 5.9 we conclude that z〈αn〉x
because z〈αn〉y and seq(x) = seq(y). Hence, x〈a〉x. Let now a ∈ Pen be such
that {x}a = {y}; such an a ∈ Pen exists because r is deterministic. Without loss
of generality we may assume that a is a product of generators, and thus from
x〈a〉y we conclude x〈a〉x, which implies x ∈ {x}a = {y}, i.e., x = y. Hence, seq
is injective.

Now we prove that r is algebraically irreducible if seq is injective. Let
then x and y be two states of the representation, and let s = seq(x) and t =
seq(y). Since the representation is irreducible, the Penrose sequences s and t

must be equivalent. Let n ∈ N be such that sk = tk for all k ≥ n. Without loss
of generality assume that sn = tn = 0. Now let a = 〈Xn

(n); . . . ; X0
(0)|, where for

each k ∈ {0, . . . , n} we have Xk = L if, and only if, tk = 0. Then clearly we have
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x〈a〉y, and furthermore if x〈a〉z we must have seq(z) = t = seq(y). Hence, z = y

because seq is injective, and therefore we have {x}a = {y}, thus showing that the
representation r is algebraically irreducible. �

Of course, an immediate consequence is the following characterisation of the
relational representations of the quantale Pen that are algebraically irreducible,
hence of the relational points of the quantale of Penrose tilings:

Corollary 6.3. A relational representation r : Pen → Q(X) is algebraically ir-
reducible if, and only if, it is equivalent to the relational representation

ρx : Pen → Q(x)

canonically determined by an equivalence class x ∈ K/∼ of Penrose sequences,
by which we mean the unique representation on x for which the canonical mapping
seq : x → K is the inclusion of x into K . In particular, the relational points of
the quantale Pen are in canonical bijective correspondence with the equivalence
classes of Penrose sequences.

The effect of moving to the consideration of Penrose sequences in studying
Penrose tilings may therefore be seen to be precisely that of taking us away from the
redundancies intrinsically involved in considering irreducible representations of
the quantale Pen to the consideration of algebraically irreducible representations,
in other words to the geometric content of the quantale Pen of Penrose tilings
described by its points.

In terms of the classification of relational representations of the quantale Pen,
the sum of the algebraically irreducible representations of Pen determined by its
points is exactly that classified by the identity mapping

idK : K → K

together with the canonical partition of the set K into equivalence classes of
Penrose sequences, yielding the following:

Definition 6.4. By the Cantor representation of Pen will be meant the relational
representation whose set of states is K , together with the interpretation of primitive
propositions defined as follows:

• s〈L(n)|t if, and only if, both tn = 0 and sm = tm for all m > n;
• s〈S(n)|t if, and only if, both tn = 1 and sm = tm for all m > n.

The Cantor representation is canonical in the following sense:

Theorem 6.5. Let X be a set, and let r : Pen → Q(X) be a relational represen-
tation. Then the map seq : X → K extends canonically to a homomorphism of
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right Pen-modules

seq� : P(X) → P(K).

Proof: It suffices that we show, for each generator a = 〈X(n)| or a = |X(n)〉, and
for each x ∈ X, that seq�({x}a) = seq�({x})a, that is, {seq(y) ∈ K | x〈a〉y} = {s ∈
K | seq(x)〈a〉s}, which means proving for all x ∈ X and all s ∈ K that we have
seq(x)〈a〉s in the Cantor representation if, and only if, x〈a〉y for some y ∈ X such
that seq(y) = s. From Theorem 5.9 one of the implications is obvious: if x〈a〉y then
seq(x)〈a〉seq(y). Furthermore, again by Theorem 5.9, each irreducible component
maps surjectively to an irreducible component of the Cantor representation, and
thus if seq(x)〈a〉s there is y ∈ X such that seq(y) = s, and furthermore we have
x〈a〉y. �

In particular, the relationship between the geometrical representation and the
Cantor representation is that expected from its rôle in eliminating states that are
equivalent for geometric reasons:

Corollary 6.6. The Cantor representation is a right Pen-module quotient of the
geometrical representation.

Of course, the Cantor representation is also canonical in the sense already
described in terms of the relational points of the quantale, but which may equally
be stated in terms of its irreducible components in the following way:

Corollary 6.7. The Cantor representation is deterministic, and a relational rep-
resentation of Pen is algebraically irreducible if, and only if, it is equivalent to an
irreducible component of the Cantor representation.

We conclude this section remarking that in view of the canonical rôle played
by Penrose sequences, one may observe that the Cantor representation may be
considered to establish an equivalence between the geometrically motivated theory
Pen of Penrose tilings and the more algebraically motivated theory defined in the
following way:

Definition 6.8. By the theory Pens of Penrose sequences modulo equivalence
will be meant that obtained by taking primitive propositions of the form

(sn = 0) and (sn = 1)
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for each n ∈ N, together with the following axioms,

(C1n) (sn = 0)&(sn = 1)∗ � false
(C2n) (sn = 1) � (sn+1 = 0)
(D1n) true � (sn = 0) ∨ (sn = 1)
(D2n) (sn+1 = b)∗&(sn+1 = b) � (sn = 0) ∨ (sn = 1)
(E1n) (sn = b′)&(sn+1 = b) � (sn+1 = b)
(E2n) (sn+1 = b)&(sn = b′) � (sn+1 = b)
(E3n) (sn = b′)∗&(sn+1 = b) � (sn+1 = b)
(E4n) (sn+1 = b)&(sn = b′)∗ � (sn+1 = b)
(C ′

t ) true � (sn = bn)& · · · &(s0 = b0)&(s0 = b0)∗& · · · &(sn = bn)∗

for each b, b′ ∈ {0, 1}, and all admissible strings t = b0 · · · bn having bn = 0,
where a string b0 · · · bn of 0’s and 1’s is said to be admissible provided that it
contains no consecutive 1’s.

Evidently, this equivalence of theories expresses that the primitive proposi-
tions 〈L(n)| and 〈S(n)| of the theory Pen of Penrose tilings may be identified with
primitive propositions (sn = 0) and (sn = 1), respectively, that describe the com-
putational properties of Penrose sequences. In turn, the quantales determined by
these noncommutative theories may each be considered as the noncommutative
space Pen of Penrose tilings, of which we have shown that the relational points
are indeed the Penrose tilings of the plane.

7. CONCLUSION

In this paper we have obtained the quotient model of the set of Penrose
tilings in terms of the representation theory of quantales, taking as a starting point
a geometrical description of the tilings by means of a noncommutative theory.
Specifically, we have provided a complete classification of the relational points
of the quantale Pen, showing that they can be identified with the Penrose tilings.
This work falls into the general effort of understanding the rôle of quantales in
providing a generalised notion of space, and it is the first example where relational
algebraically irreducible representations of a quantale are studied. It would be
therefore interesting to know whether there are other points of Pen besides the
relational ones, or to know what other axioms are necessary in the theory Pen
in order to rule out nonrelational points. This question is also interesting from
a philosophical viewpoint, for it may be argued that the importance of relational
representations in this case is directly related to the fact that underlying our axioms
is a “classical” (as opposed to quantum) notion of disjunction (cf. Section 3).

Incidentally to so doing, we have proved some new results about relational
representations, in particular obtaining a decomposition theorem for them. Con-
cretely, any relational representation on a set X is partitioned into irreducible com-
ponents by the connectivity equivalence relation on X, and it is this equivalence
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relation which, in the case of the quantale of Penrose tilings, coincides with the
equivalence relation on Penrose sequences that yields as a quotient the set of
tilings. Hence, not only the set K of Penrose sequences is derived from the rep-
resentation theory of Pen, but, in addition, and in contrast with the situation for
locales, also the equivalence relation on K is derived from Pen. This fact makes
relational representations interesting in their own right, and meriting further study.

In terms of the theory of quantales, the analysis of relational representations
has also provided the opportunity to study, at least in this context, the relationship
between irreducible and algebraically irreducible representations of quantales.
Explicitly, we have seen that in this context each irreducible representation may
be refined to an algebraically irreducible representation by passing to a quotient
set of the set of states. The subtleties of this in more general situations will be
examined elsewhere.

It has also been remarked that the identification of Penrose tilings with the
relational points of the quantale Pen allows us to view the set of tilings as having
a quantum aspect, in the sense that the logical assertions about them introduce
nondeterministic translational modifications in the tiling being observed, although
this aspect is only partial, to the extent that superposition of tiling states by means
of linear combination is still absent. In this sense, the passage from the quantale Pen
to a C*-algebra A, as that which is considered in this context by (Connes, 1994),
represented quantalically by its spectrum Max A, may be considered to correspond
to the introduction of superposition. This view is further supported by the fact that
each irreducible representation of A has as Hilbert basis an equivalence class of
Penrose sequences, suggesting that we may see each relational point of Pen as
being, in an appropriate sense, the Hilbert basis of a quantum point. However,
further consideration of these ideas depends on a more careful examination of
how Pen is related to the C*-algebra A.

Most importantly, it is evident from the discussion throughout the paper
that consideration of the quantale of Penrose tilings allows the introduction of a
noncommutative space of which the relational points are exactly the equivalence
classes of Penrose tilings of the plane. In the event that it may be shown that
these are the only points of the quantale (and as has been remarked, none others
are known), the quantale Pen may be considered to represent the noncommutative
geometric content of Penrose tilings in a particularly straightforward manner. It is
to establishing this that we hope to return in a later paper.
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Mulvey, C. J. (2002). Quantales. In The Encyclopaedia of Mathematics, M. Hazewinkel, ed., 3rd

supplement, Kluwer Academic Publishers, 2002, pp. 312–314.
Mulvey, C. J. and Pelletier, J. W. (1992). Canadian Mathematical Society Conference Proceeding 13,

345–360.
Mulvey, C. J. and Pelletier, J. W. (2001). Journal of Pure and Applied Algebra 159, 231–295.
Mulvey, C. J. an Pelletier, J. W. (2002). Journal of Pure and Applied Algebra 175, 289–325.
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